Cos’è il piano ammortamento tedesco?
Il piano ammortamento tedesco è molto simile a quello francese perché prevede il pagamento di una rata costante. La sola differenza è rappresentata dal pagamento degli interessi che si realizza in misura anticipata, ovvero all’avvio del periodo in cui matureranno.
A regolare il piano ammortamento tedesco abbiamo la seguente equazione:
Rata = | C————————————————((1+TA/PA) / TA/PA) x (1 – (1 / (1 + TA/PA)(PA x A))) |
dove:
C = Capitale (importo del finanziamento)
TA = Tasso annuo del finanziamento espresso in decimali (0,05 per scrivere 5%)
PA = Periodi annui, cioè il numero di rate che si pagano nell’anno (per esempio indicare 12 se il pagamento è mensile)
A = Numero di anni previsti complessivamente per il rimborso
Se vogliamo costruire il piano di ammortamento possiamo computare la prima rata, di soli interessi, il cui pagamento collima con il momento di rilascio del prestito. L’importo è ottenuto attualizzando l’importo della rata rispetto alla prima scadenza in programma, al tasso del periodo (tasso annuo / periodi annui).
Facciamo un esempio concreto per chiare il concetto.
Prendiamo un mutuo di 50.000 euro da rimborsare al 6% fisso con 10 rate semestrali dell’importo di Euro 5.690,80. Qualora il pagamento degli interessi fosse posticipato, la quota sulla prima rata corrisponderebbe a 50.000 (capitale) x 3% (tasso semestrale) = 1.500 Euro. Dobbiamo considerare però che l’interesse è corrisponsto in anticipo. È per ciò necessario valutare il valore con l’equazione:
Valore attuale = | Pagamento—————————————————(1 + TP) x TP / ((1 + TP) -1) |
N° rata | Interessi(se posticipati) | Interessi attualizzati | Quota Capitale | Rata | Capitale Residuo |
0 | 1.500,00 | 1.456,31 | 1.456,31 | 50.000,00 | |
1 | 5.690,80 | ||||
2 | 5.690,80 | ||||
3 | 5.690,80 | ||||
4 | 5.690,80 | ||||
5 | 5.690,80 | ||||
6 | 5.690,80 | ||||
7 | 5.690,80 | ||||
8 | 5.690,80 | ||||
9 | 5.690,80 | ||||
10 | 0,00 | 0,00 | 5.690,80 | 5.690,80 | 0,00 |
0 comments